Рассчитать высоту треугольника со сторонами 120, 118 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 118 + 6}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-120)(122-118)(122-6)}}{118}\normalsize = 5.70298057}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-120)(122-118)(122-6)}}{120}\normalsize = 5.60793089}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-120)(122-118)(122-6)}}{6}\normalsize = 112.158618}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 118 и 6 равна 5.70298057
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 118 и 6 равна 5.60793089
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 118 и 6 равна 112.158618
Ссылка на результат
?n1=120&n2=118&n3=6
Найти высоту треугольника со сторонами 67, 43 и 32
Найти высоту треугольника со сторонами 148, 148 и 118
Найти высоту треугольника со сторонами 131, 118 и 115
Найти высоту треугольника со сторонами 146, 135 и 131
Найти высоту треугольника со сторонами 148, 128 и 83
Найти высоту треугольника со сторонами 104, 76 и 76
Найти высоту треугольника со сторонами 148, 148 и 118
Найти высоту треугольника со сторонами 131, 118 и 115
Найти высоту треугольника со сторонами 146, 135 и 131
Найти высоту треугольника со сторонами 148, 128 и 83
Найти высоту треугольника со сторонами 104, 76 и 76