Рассчитать высоту треугольника со сторонами 120, 85 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 85 + 70}{2}} \normalsize = 137.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137.5(137.5-120)(137.5-85)(137.5-70)}}{85}\normalsize = 68.7088977}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137.5(137.5-120)(137.5-85)(137.5-70)}}{120}\normalsize = 48.6688026}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137.5(137.5-120)(137.5-85)(137.5-70)}}{70}\normalsize = 83.432233}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 85 и 70 равна 68.7088977
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 85 и 70 равна 48.6688026
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 85 и 70 равна 83.432233
Ссылка на результат
?n1=120&n2=85&n3=70
Найти высоту треугольника со сторонами 91, 75 и 37
Найти высоту треугольника со сторонами 102, 84 и 58
Найти высоту треугольника со сторонами 111, 60 и 56
Найти высоту треугольника со сторонами 147, 90 и 85
Найти высоту треугольника со сторонами 70, 52 и 46
Найти высоту треугольника со сторонами 149, 119 и 83
Найти высоту треугольника со сторонами 102, 84 и 58
Найти высоту треугольника со сторонами 111, 60 и 56
Найти высоту треугольника со сторонами 147, 90 и 85
Найти высоту треугольника со сторонами 70, 52 и 46
Найти высоту треугольника со сторонами 149, 119 и 83