Рассчитать высоту треугольника со сторонами 120, 89 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 89 + 55}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-120)(132-89)(132-55)}}{89}\normalsize = 51.4632451}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-120)(132-89)(132-55)}}{120}\normalsize = 38.1685735}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-120)(132-89)(132-55)}}{55}\normalsize = 83.2768875}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 89 и 55 равна 51.4632451
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 89 и 55 равна 38.1685735
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 89 и 55 равна 83.2768875
Ссылка на результат
?n1=120&n2=89&n3=55
Найти высоту треугольника со сторонами 79, 51 и 37
Найти высоту треугольника со сторонами 108, 103 и 8
Найти высоту треугольника со сторонами 149, 141 и 100
Найти высоту треугольника со сторонами 141, 136 и 64
Найти высоту треугольника со сторонами 125, 88 и 48
Найти высоту треугольника со сторонами 140, 116 и 80
Найти высоту треугольника со сторонами 108, 103 и 8
Найти высоту треугольника со сторонами 149, 141 и 100
Найти высоту треугольника со сторонами 141, 136 и 64
Найти высоту треугольника со сторонами 125, 88 и 48
Найти высоту треугольника со сторонами 140, 116 и 80