Рассчитать высоту треугольника со сторонами 120, 91 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 91 + 31}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-120)(121-91)(121-31)}}{91}\normalsize = 12.5621267}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-120)(121-91)(121-31)}}{120}\normalsize = 9.52627944}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-120)(121-91)(121-31)}}{31}\normalsize = 36.8759204}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 91 и 31 равна 12.5621267
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 91 и 31 равна 9.52627944
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 91 и 31 равна 36.8759204
Ссылка на результат
?n1=120&n2=91&n3=31
Найти высоту треугольника со сторонами 107, 95 и 54
Найти высоту треугольника со сторонами 66, 36 и 34
Найти высоту треугольника со сторонами 113, 105 и 11
Найти высоту треугольника со сторонами 82, 62 и 22
Найти высоту треугольника со сторонами 129, 99 и 54
Найти высоту треугольника со сторонами 132, 79 и 54
Найти высоту треугольника со сторонами 66, 36 и 34
Найти высоту треугольника со сторонами 113, 105 и 11
Найти высоту треугольника со сторонами 82, 62 и 22
Найти высоту треугольника со сторонами 129, 99 и 54
Найти высоту треугольника со сторонами 132, 79 и 54