Рассчитать высоту треугольника со сторонами 121, 104 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 104 + 39}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-121)(132-104)(132-39)}}{104}\normalsize = 37.3938735}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-121)(132-104)(132-39)}}{121}\normalsize = 32.1401888}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-121)(132-104)(132-39)}}{39}\normalsize = 99.716996}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 104 и 39 равна 37.3938735
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 104 и 39 равна 32.1401888
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 104 и 39 равна 99.716996
Ссылка на результат
?n1=121&n2=104&n3=39
Найти высоту треугольника со сторонами 128, 125 и 23
Найти высоту треугольника со сторонами 148, 99 и 65
Найти высоту треугольника со сторонами 145, 86 и 75
Найти высоту треугольника со сторонами 93, 66 и 59
Найти высоту треугольника со сторонами 127, 110 и 39
Найти высоту треугольника со сторонами 132, 115 и 109
Найти высоту треугольника со сторонами 148, 99 и 65
Найти высоту треугольника со сторонами 145, 86 и 75
Найти высоту треугольника со сторонами 93, 66 и 59
Найти высоту треугольника со сторонами 127, 110 и 39
Найти высоту треугольника со сторонами 132, 115 и 109