Рассчитать высоту треугольника со сторонами 121, 104 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 104 + 86}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-121)(155.5-104)(155.5-86)}}{104}\normalsize = 84.2689179}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-121)(155.5-104)(155.5-86)}}{121}\normalsize = 72.4294832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-121)(155.5-104)(155.5-86)}}{86}\normalsize = 101.906598}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 104 и 86 равна 84.2689179
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 104 и 86 равна 72.4294832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 104 и 86 равна 101.906598
Ссылка на результат
?n1=121&n2=104&n3=86
Найти высоту треугольника со сторонами 144, 77 и 77
Найти высоту треугольника со сторонами 96, 87 и 81
Найти высоту треугольника со сторонами 79, 64 и 37
Найти высоту треугольника со сторонами 104, 98 и 95
Найти высоту треугольника со сторонами 147, 98 и 70
Найти высоту треугольника со сторонами 102, 83 и 28
Найти высоту треугольника со сторонами 96, 87 и 81
Найти высоту треугольника со сторонами 79, 64 и 37
Найти высоту треугольника со сторонами 104, 98 и 95
Найти высоту треугольника со сторонами 147, 98 и 70
Найти высоту треугольника со сторонами 102, 83 и 28