Рассчитать высоту треугольника со сторонами 121, 114 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 114 + 93}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-121)(164-114)(164-93)}}{114}\normalsize = 87.779979}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-121)(164-114)(164-93)}}{121}\normalsize = 82.7017984}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-121)(164-114)(164-93)}}{93}\normalsize = 107.601265}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 114 и 93 равна 87.779979
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 114 и 93 равна 82.7017984
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 114 и 93 равна 107.601265
Ссылка на результат
?n1=121&n2=114&n3=93
Найти высоту треугольника со сторонами 86, 71 и 39
Найти высоту треугольника со сторонами 126, 114 и 78
Найти высоту треугольника со сторонами 87, 62 и 50
Найти высоту треугольника со сторонами 69, 64 и 46
Найти высоту треугольника со сторонами 91, 65 и 40
Найти высоту треугольника со сторонами 65, 47 и 38
Найти высоту треугольника со сторонами 126, 114 и 78
Найти высоту треугольника со сторонами 87, 62 и 50
Найти высоту треугольника со сторонами 69, 64 и 46
Найти высоту треугольника со сторонами 91, 65 и 40
Найти высоту треугольника со сторонами 65, 47 и 38