Рассчитать высоту треугольника со сторонами 121, 120 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 120 + 50}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-121)(145.5-120)(145.5-50)}}{120}\normalsize = 49.1060571}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-121)(145.5-120)(145.5-50)}}{121}\normalsize = 48.7002219}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-121)(145.5-120)(145.5-50)}}{50}\normalsize = 117.854537}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 120 и 50 равна 49.1060571
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 120 и 50 равна 48.7002219
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 120 и 50 равна 117.854537
Ссылка на результат
?n1=121&n2=120&n3=50
Найти высоту треугольника со сторонами 146, 111 и 61
Найти высоту треугольника со сторонами 120, 104 и 89
Найти высоту треугольника со сторонами 145, 136 и 130
Найти высоту треугольника со сторонами 120, 120 и 117
Найти высоту треугольника со сторонами 92, 86 и 25
Найти высоту треугольника со сторонами 127, 94 и 73
Найти высоту треугольника со сторонами 120, 104 и 89
Найти высоту треугольника со сторонами 145, 136 и 130
Найти высоту треугольника со сторонами 120, 120 и 117
Найти высоту треугольника со сторонами 92, 86 и 25
Найти высоту треугольника со сторонами 127, 94 и 73