Рассчитать высоту треугольника со сторонами 121, 89 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 89 + 47}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-121)(128.5-89)(128.5-47)}}{89}\normalsize = 39.5821643}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-121)(128.5-89)(128.5-47)}}{121}\normalsize = 29.1141539}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-121)(128.5-89)(128.5-47)}}{47}\normalsize = 74.95346}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 89 и 47 равна 39.5821643
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 89 и 47 равна 29.1141539
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 89 и 47 равна 74.95346
Ссылка на результат
?n1=121&n2=89&n3=47
Найти высоту треугольника со сторонами 146, 130 и 32
Найти высоту треугольника со сторонами 59, 55 и 32
Найти высоту треугольника со сторонами 132, 128 и 116
Найти высоту треугольника со сторонами 17, 14 и 11
Найти высоту треугольника со сторонами 118, 88 и 82
Найти высоту треугольника со сторонами 91, 82 и 73
Найти высоту треугольника со сторонами 59, 55 и 32
Найти высоту треугольника со сторонами 132, 128 и 116
Найти высоту треугольника со сторонами 17, 14 и 11
Найти высоту треугольника со сторонами 118, 88 и 82
Найти высоту треугольника со сторонами 91, 82 и 73