Рассчитать высоту треугольника со сторонами 121, 98 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 98 + 44}{2}} \normalsize = 131.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131.5(131.5-121)(131.5-98)(131.5-44)}}{98}\normalsize = 41.0570627}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131.5(131.5-121)(131.5-98)(131.5-44)}}{121}\normalsize = 33.2528276}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131.5(131.5-121)(131.5-98)(131.5-44)}}{44}\normalsize = 91.445276}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 98 и 44 равна 41.0570627
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 98 и 44 равна 33.2528276
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 98 и 44 равна 91.445276
Ссылка на результат
?n1=121&n2=98&n3=44
Найти высоту треугольника со сторонами 97, 96 и 3
Найти высоту треугольника со сторонами 100, 71 и 59
Найти высоту треугольника со сторонами 128, 81 и 49
Найти высоту треугольника со сторонами 82, 78 и 32
Найти высоту треугольника со сторонами 65, 46 и 43
Найти высоту треугольника со сторонами 104, 99 и 85
Найти высоту треугольника со сторонами 100, 71 и 59
Найти высоту треугольника со сторонами 128, 81 и 49
Найти высоту треугольника со сторонами 82, 78 и 32
Найти высоту треугольника со сторонами 65, 46 и 43
Найти высоту треугольника со сторонами 104, 99 и 85