Рассчитать высоту треугольника со сторонами 121, 99 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 99 + 88}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-121)(154-99)(154-88)}}{99}\normalsize = 86.7691702}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-121)(154-99)(154-88)}}{121}\normalsize = 70.9929574}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-121)(154-99)(154-88)}}{88}\normalsize = 97.6153164}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 99 и 88 равна 86.7691702
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 99 и 88 равна 70.9929574
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 99 и 88 равна 97.6153164
Ссылка на результат
?n1=121&n2=99&n3=88
Найти высоту треугольника со сторонами 139, 126 и 14
Найти высоту треугольника со сторонами 79, 61 и 38
Найти высоту треугольника со сторонами 122, 105 и 40
Найти высоту треугольника со сторонами 139, 122 и 74
Найти высоту треугольника со сторонами 82, 72 и 53
Найти высоту треугольника со сторонами 126, 112 и 64
Найти высоту треугольника со сторонами 79, 61 и 38
Найти высоту треугольника со сторонами 122, 105 и 40
Найти высоту треугольника со сторонами 139, 122 и 74
Найти высоту треугольника со сторонами 82, 72 и 53
Найти высоту треугольника со сторонами 126, 112 и 64