Рассчитать высоту треугольника со сторонами 122, 107 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 107 + 50}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-122)(139.5-107)(139.5-50)}}{107}\normalsize = 49.8087387}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-122)(139.5-107)(139.5-50)}}{122}\normalsize = 43.6847134}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-122)(139.5-107)(139.5-50)}}{50}\normalsize = 106.590701}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 107 и 50 равна 49.8087387
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 107 и 50 равна 43.6847134
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 107 и 50 равна 106.590701
Ссылка на результат
?n1=122&n2=107&n3=50
Найти высоту треугольника со сторонами 119, 113 и 73
Найти высоту треугольника со сторонами 126, 110 и 72
Найти высоту треугольника со сторонами 147, 123 и 91
Найти высоту треугольника со сторонами 149, 118 и 41
Найти высоту треугольника со сторонами 143, 106 и 66
Найти высоту треугольника со сторонами 116, 104 и 56
Найти высоту треугольника со сторонами 126, 110 и 72
Найти высоту треугольника со сторонами 147, 123 и 91
Найти высоту треугольника со сторонами 149, 118 и 41
Найти высоту треугольника со сторонами 143, 106 и 66
Найти высоту треугольника со сторонами 116, 104 и 56