Рассчитать высоту треугольника со сторонами 122, 113 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 113 + 53}{2}} \normalsize = 144}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144(144-122)(144-113)(144-53)}}{113}\normalsize = 52.9109649}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144(144-122)(144-113)(144-53)}}{122}\normalsize = 49.007697}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144(144-122)(144-113)(144-53)}}{53}\normalsize = 112.81017}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 113 и 53 равна 52.9109649
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 113 и 53 равна 49.007697
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 113 и 53 равна 112.81017
Ссылка на результат
?n1=122&n2=113&n3=53
Найти высоту треугольника со сторонами 149, 148 и 2
Найти высоту треугольника со сторонами 27, 21 и 15
Найти высоту треугольника со сторонами 58, 57 и 22
Найти высоту треугольника со сторонами 74, 51 и 41
Найти высоту треугольника со сторонами 72, 68 и 23
Найти высоту треугольника со сторонами 129, 107 и 89
Найти высоту треугольника со сторонами 27, 21 и 15
Найти высоту треугольника со сторонами 58, 57 и 22
Найти высоту треугольника со сторонами 74, 51 и 41
Найти высоту треугольника со сторонами 72, 68 и 23
Найти высоту треугольника со сторонами 129, 107 и 89