Рассчитать высоту треугольника со сторонами 122, 114 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 114 + 51}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-122)(143.5-114)(143.5-51)}}{114}\normalsize = 50.9040339}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-122)(143.5-114)(143.5-51)}}{122}\normalsize = 47.5660644}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-122)(143.5-114)(143.5-51)}}{51}\normalsize = 113.785487}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 114 и 51 равна 50.9040339
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 114 и 51 равна 47.5660644
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 114 и 51 равна 113.785487
Ссылка на результат
?n1=122&n2=114&n3=51
Найти высоту треугольника со сторонами 141, 83 и 74
Найти высоту треугольника со сторонами 125, 117 и 75
Найти высоту треугольника со сторонами 134, 122 и 30
Найти высоту треугольника со сторонами 112, 71 и 71
Найти высоту треугольника со сторонами 111, 107 и 25
Найти высоту треугольника со сторонами 123, 110 и 102
Найти высоту треугольника со сторонами 125, 117 и 75
Найти высоту треугольника со сторонами 134, 122 и 30
Найти высоту треугольника со сторонами 112, 71 и 71
Найти высоту треугольника со сторонами 111, 107 и 25
Найти высоту треугольника со сторонами 123, 110 и 102