Рассчитать высоту треугольника со сторонами 122, 117 и 116
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 117 + 116}{2}} \normalsize = 177.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{177.5(177.5-122)(177.5-117)(177.5-116)}}{117}\normalsize = 103.491588}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{177.5(177.5-122)(177.5-117)(177.5-116)}}{122}\normalsize = 99.2501291}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{177.5(177.5-122)(177.5-117)(177.5-116)}}{116}\normalsize = 104.383756}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 117 и 116 равна 103.491588
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 117 и 116 равна 99.2501291
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 117 и 116 равна 104.383756
Ссылка на результат
?n1=122&n2=117&n3=116
Найти высоту треугольника со сторонами 139, 118 и 81
Найти высоту треугольника со сторонами 144, 123 и 99
Найти высоту треугольника со сторонами 112, 97 и 60
Найти высоту треугольника со сторонами 125, 87 и 51
Найти высоту треугольника со сторонами 100, 85 и 25
Найти высоту треугольника со сторонами 121, 88 и 84
Найти высоту треугольника со сторонами 144, 123 и 99
Найти высоту треугольника со сторонами 112, 97 и 60
Найти высоту треугольника со сторонами 125, 87 и 51
Найти высоту треугольника со сторонами 100, 85 и 25
Найти высоту треугольника со сторонами 121, 88 и 84