Рассчитать высоту треугольника со сторонами 122, 120 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 120 + 62}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-122)(152-120)(152-62)}}{120}\normalsize = 60.3986755}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-122)(152-120)(152-62)}}{122}\normalsize = 59.4085333}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-122)(152-120)(152-62)}}{62}\normalsize = 116.900662}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 120 и 62 равна 60.3986755
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 120 и 62 равна 59.4085333
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 120 и 62 равна 116.900662
Ссылка на результат
?n1=122&n2=120&n3=62
Найти высоту треугольника со сторонами 133, 102 и 56
Найти высоту треугольника со сторонами 135, 119 и 91
Найти высоту треугольника со сторонами 121, 114 и 12
Найти высоту треугольника со сторонами 125, 93 и 47
Найти высоту треугольника со сторонами 130, 128 и 32
Найти высоту треугольника со сторонами 37, 32 и 31
Найти высоту треугольника со сторонами 135, 119 и 91
Найти высоту треугольника со сторонами 121, 114 и 12
Найти высоту треугольника со сторонами 125, 93 и 47
Найти высоту треугольника со сторонами 130, 128 и 32
Найти высоту треугольника со сторонами 37, 32 и 31