Рассчитать высоту треугольника со сторонами 122, 120 и 91

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 120 + 91}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-122)(166.5-120)(166.5-91)}}{120}\normalsize = 85.0033078}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-122)(166.5-120)(166.5-91)}}{122}\normalsize = 83.609811}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-122)(166.5-120)(166.5-91)}}{91}\normalsize = 112.092274}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 120 и 91 равна 85.0033078
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 120 и 91 равна 83.609811
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 120 и 91 равна 112.092274
Ссылка на результат
?n1=122&n2=120&n3=91