Рассчитать высоту треугольника со сторонами 123, 101 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 101 + 84}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-123)(154-101)(154-84)}}{101}\normalsize = 83.3367931}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-123)(154-101)(154-84)}}{123}\normalsize = 68.4310252}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-123)(154-101)(154-84)}}{84}\normalsize = 100.202573}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 101 и 84 равна 83.3367931
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 101 и 84 равна 68.4310252
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 101 и 84 равна 100.202573
Ссылка на результат
?n1=123&n2=101&n3=84
Найти высоту треугольника со сторонами 15, 11 и 8
Найти высоту треугольника со сторонами 125, 95 и 48
Найти высоту треугольника со сторонами 138, 117 и 82
Найти высоту треугольника со сторонами 135, 135 и 37
Найти высоту треугольника со сторонами 96, 81 и 30
Найти высоту треугольника со сторонами 77, 74 и 5
Найти высоту треугольника со сторонами 125, 95 и 48
Найти высоту треугольника со сторонами 138, 117 и 82
Найти высоту треугольника со сторонами 135, 135 и 37
Найти высоту треугольника со сторонами 96, 81 и 30
Найти высоту треугольника со сторонами 77, 74 и 5