Рассчитать высоту треугольника со сторонами 123, 103 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 103 + 58}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-123)(142-103)(142-58)}}{103}\normalsize = 57.7278908}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-123)(142-103)(142-58)}}{123}\normalsize = 48.3412419}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-123)(142-103)(142-58)}}{58}\normalsize = 102.516772}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 103 и 58 равна 57.7278908
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 103 и 58 равна 48.3412419
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 103 и 58 равна 102.516772
Ссылка на результат
?n1=123&n2=103&n3=58
Найти высоту треугольника со сторонами 72, 60 и 13
Найти высоту треугольника со сторонами 133, 93 и 75
Найти высоту треугольника со сторонами 137, 134 и 10
Найти высоту треугольника со сторонами 34, 24 и 13
Найти высоту треугольника со сторонами 130, 102 и 84
Найти высоту треугольника со сторонами 110, 63 и 55
Найти высоту треугольника со сторонами 133, 93 и 75
Найти высоту треугольника со сторонами 137, 134 и 10
Найти высоту треугольника со сторонами 34, 24 и 13
Найти высоту треугольника со сторонами 130, 102 и 84
Найти высоту треугольника со сторонами 110, 63 и 55