Рассчитать высоту треугольника со сторонами 123, 115 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 115 + 37}{2}} \normalsize = 137.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137.5(137.5-123)(137.5-115)(137.5-37)}}{115}\normalsize = 36.9268103}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137.5(137.5-123)(137.5-115)(137.5-37)}}{123}\normalsize = 34.5250665}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137.5(137.5-123)(137.5-115)(137.5-37)}}{37}\normalsize = 114.772519}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 115 и 37 равна 36.9268103
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 115 и 37 равна 34.5250665
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 115 и 37 равна 114.772519
Ссылка на результат
?n1=123&n2=115&n3=37
Найти высоту треугольника со сторонами 117, 113 и 106
Найти высоту треугольника со сторонами 94, 84 и 38
Найти высоту треугольника со сторонами 142, 111 и 67
Найти высоту треугольника со сторонами 150, 139 и 136
Найти высоту треугольника со сторонами 121, 102 и 27
Найти высоту треугольника со сторонами 35, 35 и 30
Найти высоту треугольника со сторонами 94, 84 и 38
Найти высоту треугольника со сторонами 142, 111 и 67
Найти высоту треугольника со сторонами 150, 139 и 136
Найти высоту треугольника со сторонами 121, 102 и 27
Найти высоту треугольника со сторонами 35, 35 и 30