Рассчитать высоту треугольника со сторонами 123, 115 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 115 + 66}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-123)(152-115)(152-66)}}{115}\normalsize = 65.133293}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-123)(152-115)(152-66)}}{123}\normalsize = 60.8969813}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-123)(152-115)(152-66)}}{66}\normalsize = 113.489829}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 115 и 66 равна 65.133293
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 115 и 66 равна 60.8969813
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 115 и 66 равна 113.489829
Ссылка на результат
?n1=123&n2=115&n3=66
Найти высоту треугольника со сторонами 150, 125 и 83
Найти высоту треугольника со сторонами 120, 113 и 9
Найти высоту треугольника со сторонами 102, 97 и 38
Найти высоту треугольника со сторонами 136, 132 и 116
Найти высоту треугольника со сторонами 60, 43 и 26
Найти высоту треугольника со сторонами 136, 99 и 97
Найти высоту треугольника со сторонами 120, 113 и 9
Найти высоту треугольника со сторонами 102, 97 и 38
Найти высоту треугольника со сторонами 136, 132 и 116
Найти высоту треугольника со сторонами 60, 43 и 26
Найти высоту треугольника со сторонами 136, 99 и 97