Рассчитать высоту треугольника со сторонами 123, 121 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 121 + 112}{2}} \normalsize = 178}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178(178-123)(178-121)(178-112)}}{121}\normalsize = 100.310262}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178(178-123)(178-121)(178-112)}}{123}\normalsize = 98.6792013}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178(178-123)(178-121)(178-112)}}{112}\normalsize = 108.370909}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 121 и 112 равна 100.310262
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 121 и 112 равна 98.6792013
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 121 и 112 равна 108.370909
Ссылка на результат
?n1=123&n2=121&n3=112
Найти высоту треугольника со сторонами 111, 75 и 51
Найти высоту треугольника со сторонами 120, 103 и 89
Найти высоту треугольника со сторонами 28, 23 и 7
Найти высоту треугольника со сторонами 104, 75 и 70
Найти высоту треугольника со сторонами 96, 76 и 69
Найти высоту треугольника со сторонами 132, 85 и 81
Найти высоту треугольника со сторонами 120, 103 и 89
Найти высоту треугольника со сторонами 28, 23 и 7
Найти высоту треугольника со сторонами 104, 75 и 70
Найти высоту треугольника со сторонами 96, 76 и 69
Найти высоту треугольника со сторонами 132, 85 и 81