Рассчитать высоту треугольника со сторонами 123, 75 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 75 + 62}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-123)(130-75)(130-62)}}{75}\normalsize = 49.1954831}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-123)(130-75)(130-62)}}{123}\normalsize = 29.9972458}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-123)(130-75)(130-62)}}{62}\normalsize = 59.510665}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 75 и 62 равна 49.1954831
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 75 и 62 равна 29.9972458
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 75 и 62 равна 59.510665
Ссылка на результат
?n1=123&n2=75&n3=62