Рассчитать высоту треугольника со сторонами 123, 75 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 75 + 64}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-123)(131-75)(131-64)}}{75}\normalsize = 52.8787023}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-123)(131-75)(131-64)}}{123}\normalsize = 32.2431112}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-123)(131-75)(131-64)}}{64}\normalsize = 61.9672292}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 75 и 64 равна 52.8787023
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 75 и 64 равна 32.2431112
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 75 и 64 равна 61.9672292
Ссылка на результат
?n1=123&n2=75&n3=64
Найти высоту треугольника со сторонами 114, 109 и 53
Найти высоту треугольника со сторонами 126, 111 и 31
Найти высоту треугольника со сторонами 136, 105 и 38
Найти высоту треугольника со сторонами 139, 100 и 44
Найти высоту треугольника со сторонами 92, 92 и 35
Найти высоту треугольника со сторонами 139, 118 и 92
Найти высоту треугольника со сторонами 126, 111 и 31
Найти высоту треугольника со сторонами 136, 105 и 38
Найти высоту треугольника со сторонами 139, 100 и 44
Найти высоту треугольника со сторонами 92, 92 и 35
Найти высоту треугольника со сторонами 139, 118 и 92