Рассчитать высоту треугольника со сторонами 123, 92 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 92 + 75}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-123)(145-92)(145-75)}}{92}\normalsize = 74.7867163}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-123)(145-92)(145-75)}}{123}\normalsize = 55.9380317}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-123)(145-92)(145-75)}}{75}\normalsize = 91.738372}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 92 и 75 равна 74.7867163
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 92 и 75 равна 55.9380317
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 92 и 75 равна 91.738372
Ссылка на результат
?n1=123&n2=92&n3=75
Найти высоту треугольника со сторонами 22, 21 и 5
Найти высоту треугольника со сторонами 108, 56 и 53
Найти высоту треугольника со сторонами 114, 110 и 79
Найти высоту треугольника со сторонами 79, 53 и 33
Найти высоту треугольника со сторонами 72, 60 и 53
Найти высоту треугольника со сторонами 144, 124 и 113
Найти высоту треугольника со сторонами 108, 56 и 53
Найти высоту треугольника со сторонами 114, 110 и 79
Найти высоту треугольника со сторонами 79, 53 и 33
Найти высоту треугольника со сторонами 72, 60 и 53
Найти высоту треугольника со сторонами 144, 124 и 113