Рассчитать высоту треугольника со сторонами 124, 102 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 102 + 40}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-124)(133-102)(133-40)}}{102}\normalsize = 36.4249715}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-124)(133-102)(133-40)}}{124}\normalsize = 29.9624765}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-124)(133-102)(133-40)}}{40}\normalsize = 92.8836773}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 102 и 40 равна 36.4249715
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 102 и 40 равна 29.9624765
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 102 и 40 равна 92.8836773
Ссылка на результат
?n1=124&n2=102&n3=40
Найти высоту треугольника со сторонами 112, 99 и 25
Найти высоту треугольника со сторонами 78, 77 и 2
Найти высоту треугольника со сторонами 105, 75 и 43
Найти высоту треугольника со сторонами 134, 130 и 72
Найти высоту треугольника со сторонами 114, 95 и 87
Найти высоту треугольника со сторонами 98, 66 и 53
Найти высоту треугольника со сторонами 78, 77 и 2
Найти высоту треугольника со сторонами 105, 75 и 43
Найти высоту треугольника со сторонами 134, 130 и 72
Найти высоту треугольника со сторонами 114, 95 и 87
Найти высоту треугольника со сторонами 98, 66 и 53