Рассчитать высоту треугольника со сторонами 124, 102 и 85

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 102 + 85}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-124)(155.5-102)(155.5-85)}}{102}\normalsize = 84.2794605}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-124)(155.5-102)(155.5-85)}}{124}\normalsize = 69.326653}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-124)(155.5-102)(155.5-85)}}{85}\normalsize = 101.135353}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 102 и 85 равна 84.2794605
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 102 и 85 равна 69.326653
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 102 и 85 равна 101.135353
Ссылка на результат
?n1=124&n2=102&n3=85