Рассчитать высоту треугольника со сторонами 124, 103 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 103 + 81}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-124)(154-103)(154-81)}}{103}\normalsize = 80.530478}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-124)(154-103)(154-81)}}{124}\normalsize = 66.8922519}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-124)(154-103)(154-81)}}{81}\normalsize = 102.402953}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 103 и 81 равна 80.530478
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 103 и 81 равна 66.8922519
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 103 и 81 равна 102.402953
Ссылка на результат
?n1=124&n2=103&n3=81
Найти высоту треугольника со сторонами 90, 83 и 36
Найти высоту треугольника со сторонами 121, 118 и 56
Найти высоту треугольника со сторонами 116, 104 и 74
Найти высоту треугольника со сторонами 140, 129 и 29
Найти высоту треугольника со сторонами 64, 61 и 11
Найти высоту треугольника со сторонами 84, 68 и 68
Найти высоту треугольника со сторонами 121, 118 и 56
Найти высоту треугольника со сторонами 116, 104 и 74
Найти высоту треугольника со сторонами 140, 129 и 29
Найти высоту треугольника со сторонами 64, 61 и 11
Найти высоту треугольника со сторонами 84, 68 и 68