Рассчитать высоту треугольника со сторонами 124, 119 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 119 + 6}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-124)(124.5-119)(124.5-6)}}{119}\normalsize = 3.38526937}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-124)(124.5-119)(124.5-6)}}{124}\normalsize = 3.24876658}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-124)(124.5-119)(124.5-6)}}{6}\normalsize = 67.1411759}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 119 и 6 равна 3.38526937
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 119 и 6 равна 3.24876658
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 119 и 6 равна 67.1411759
Ссылка на результат
?n1=124&n2=119&n3=6
Найти высоту треугольника со сторонами 119, 95 и 26
Найти высоту треугольника со сторонами 85, 51 и 49
Найти высоту треугольника со сторонами 112, 105 и 73
Найти высоту треугольника со сторонами 115, 89 и 38
Найти высоту треугольника со сторонами 119, 108 и 101
Найти высоту треугольника со сторонами 136, 127 и 55
Найти высоту треугольника со сторонами 85, 51 и 49
Найти высоту треугольника со сторонами 112, 105 и 73
Найти высоту треугольника со сторонами 115, 89 и 38
Найти высоту треугольника со сторонами 119, 108 и 101
Найти высоту треугольника со сторонами 136, 127 и 55