Рассчитать высоту треугольника со сторонами 124, 76 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 76 + 63}{2}} \normalsize = 131.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131.5(131.5-124)(131.5-76)(131.5-63)}}{76}\normalsize = 50.9567462}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131.5(131.5-124)(131.5-76)(131.5-63)}}{124}\normalsize = 31.2315541}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131.5(131.5-124)(131.5-76)(131.5-63)}}{63}\normalsize = 61.4716303}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 76 и 63 равна 50.9567462
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 76 и 63 равна 31.2315541
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 76 и 63 равна 61.4716303
Ссылка на результат
?n1=124&n2=76&n3=63
Найти высоту треугольника со сторонами 81, 68 и 31
Найти высоту треугольника со сторонами 142, 95 и 80
Найти высоту треугольника со сторонами 139, 118 и 109
Найти высоту треугольника со сторонами 63, 51 и 21
Найти высоту треугольника со сторонами 150, 133 и 120
Найти высоту треугольника со сторонами 98, 60 и 48
Найти высоту треугольника со сторонами 142, 95 и 80
Найти высоту треугольника со сторонами 139, 118 и 109
Найти высоту треугольника со сторонами 63, 51 и 21
Найти высоту треугольника со сторонами 150, 133 и 120
Найти высоту треугольника со сторонами 98, 60 и 48