Рассчитать высоту треугольника со сторонами 124, 80 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 80 + 47}{2}} \normalsize = 125.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{125.5(125.5-124)(125.5-80)(125.5-47)}}{80}\normalsize = 20.4997247}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{125.5(125.5-124)(125.5-80)(125.5-47)}}{124}\normalsize = 13.2256288}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{125.5(125.5-124)(125.5-80)(125.5-47)}}{47}\normalsize = 34.8931483}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 80 и 47 равна 20.4997247
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 80 и 47 равна 13.2256288
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 80 и 47 равна 34.8931483
Ссылка на результат
?n1=124&n2=80&n3=47
Найти высоту треугольника со сторонами 118, 84 и 58
Найти высоту треугольника со сторонами 110, 106 и 98
Найти высоту треугольника со сторонами 143, 112 и 87
Найти высоту треугольника со сторонами 117, 117 и 42
Найти высоту треугольника со сторонами 87, 64 и 32
Найти высоту треугольника со сторонами 100, 99 и 93
Найти высоту треугольника со сторонами 110, 106 и 98
Найти высоту треугольника со сторонами 143, 112 и 87
Найти высоту треугольника со сторонами 117, 117 и 42
Найти высоту треугольника со сторонами 87, 64 и 32
Найти высоту треугольника со сторонами 100, 99 и 93