Рассчитать высоту треугольника со сторонами 124, 84 и 51

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 84 + 51}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-124)(129.5-84)(129.5-51)}}{84}\normalsize = 37.9758467}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-124)(129.5-84)(129.5-51)}}{124}\normalsize = 25.7255736}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-124)(129.5-84)(129.5-51)}}{51}\normalsize = 62.5484533}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 84 и 51 равна 37.9758467
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 84 и 51 равна 25.7255736
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 84 и 51 равна 62.5484533
Ссылка на результат
?n1=124&n2=84&n3=51