Рассчитать высоту треугольника со сторонами 124, 92 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 92 + 79}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-124)(147.5-92)(147.5-79)}}{92}\normalsize = 78.9157861}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-124)(147.5-92)(147.5-79)}}{124}\normalsize = 58.5504219}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-124)(147.5-92)(147.5-79)}}{79}\normalsize = 91.9019281}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 92 и 79 равна 78.9157861
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 92 и 79 равна 58.5504219
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 92 и 79 равна 91.9019281
Ссылка на результат
?n1=124&n2=92&n3=79
Найти высоту треугольника со сторонами 137, 104 и 58
Найти высоту треугольника со сторонами 95, 94 и 88
Найти высоту треугольника со сторонами 115, 107 и 13
Найти высоту треугольника со сторонами 119, 100 и 77
Найти высоту треугольника со сторонами 110, 97 и 56
Найти высоту треугольника со сторонами 138, 93 и 53
Найти высоту треугольника со сторонами 95, 94 и 88
Найти высоту треугольника со сторонами 115, 107 и 13
Найти высоту треугольника со сторонами 119, 100 и 77
Найти высоту треугольника со сторонами 110, 97 и 56
Найти высоту треугольника со сторонами 138, 93 и 53