Рассчитать высоту треугольника со сторонами 125, 107 и 79

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 107 + 79}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-125)(155.5-107)(155.5-79)}}{107}\normalsize = 78.4084595}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-125)(155.5-107)(155.5-79)}}{125}\normalsize = 67.1176413}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-125)(155.5-107)(155.5-79)}}{79}\normalsize = 106.1988}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 107 и 79 равна 78.4084595
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 107 и 79 равна 67.1176413
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 107 и 79 равна 106.1988
Ссылка на результат
?n1=125&n2=107&n3=79