Рассчитать высоту треугольника со сторонами 125, 107 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 107 + 90}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-125)(161-107)(161-90)}}{107}\normalsize = 88.1122843}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-125)(161-107)(161-90)}}{125}\normalsize = 75.4241154}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-125)(161-107)(161-90)}}{90}\normalsize = 104.755716}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 107 и 90 равна 88.1122843
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 107 и 90 равна 75.4241154
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 107 и 90 равна 104.755716
Ссылка на результат
?n1=125&n2=107&n3=90
Найти высоту треугольника со сторонами 149, 146 и 129
Найти высоту треугольника со сторонами 117, 111 и 34
Найти высоту треугольника со сторонами 135, 118 и 96
Найти высоту треугольника со сторонами 45, 40 и 38
Найти высоту треугольника со сторонами 146, 93 и 73
Найти высоту треугольника со сторонами 127, 111 и 40
Найти высоту треугольника со сторонами 117, 111 и 34
Найти высоту треугольника со сторонами 135, 118 и 96
Найти высоту треугольника со сторонами 45, 40 и 38
Найти высоту треугольника со сторонами 146, 93 и 73
Найти высоту треугольника со сторонами 127, 111 и 40