Рассчитать высоту треугольника со сторонами 125, 113 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 113 + 95}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-125)(166.5-113)(166.5-95)}}{113}\normalsize = 90.9939738}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-125)(166.5-113)(166.5-95)}}{125}\normalsize = 82.2585523}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-125)(166.5-113)(166.5-95)}}{95}\normalsize = 108.234937}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 113 и 95 равна 90.9939738
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 113 и 95 равна 82.2585523
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 113 и 95 равна 108.234937
Ссылка на результат
?n1=125&n2=113&n3=95
Найти высоту треугольника со сторонами 147, 112 и 59
Найти высоту треугольника со сторонами 90, 85 и 64
Найти высоту треугольника со сторонами 95, 89 и 84
Найти высоту треугольника со сторонами 57, 52 и 6
Найти высоту треугольника со сторонами 87, 83 и 55
Найти высоту треугольника со сторонами 124, 86 и 57
Найти высоту треугольника со сторонами 90, 85 и 64
Найти высоту треугольника со сторонами 95, 89 и 84
Найти высоту треугольника со сторонами 57, 52 и 6
Найти высоту треугольника со сторонами 87, 83 и 55
Найти высоту треугольника со сторонами 124, 86 и 57