Рассчитать высоту треугольника со сторонами 125, 114 и 105
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 114 + 105}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-125)(172-114)(172-105)}}{114}\normalsize = 98.3308277}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-125)(172-114)(172-105)}}{125}\normalsize = 89.6777149}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-125)(172-114)(172-105)}}{105}\normalsize = 106.759184}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 114 и 105 равна 98.3308277
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 114 и 105 равна 89.6777149
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 114 и 105 равна 106.759184
Ссылка на результат
?n1=125&n2=114&n3=105
Найти высоту треугольника со сторонами 77, 62 и 20
Найти высоту треугольника со сторонами 139, 122 и 40
Найти высоту треугольника со сторонами 132, 83 и 72
Найти высоту треугольника со сторонами 96, 94 и 22
Найти высоту треугольника со сторонами 132, 106 и 75
Найти высоту треугольника со сторонами 96, 76 и 61
Найти высоту треугольника со сторонами 139, 122 и 40
Найти высоту треугольника со сторонами 132, 83 и 72
Найти высоту треугольника со сторонами 96, 94 и 22
Найти высоту треугольника со сторонами 132, 106 и 75
Найти высоту треугольника со сторонами 96, 76 и 61