Рассчитать высоту треугольника со сторонами 125, 119 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 119 + 46}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-125)(145-119)(145-46)}}{119}\normalsize = 45.9183532}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-125)(145-119)(145-46)}}{125}\normalsize = 43.7142723}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-125)(145-119)(145-46)}}{46}\normalsize = 118.788783}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 119 и 46 равна 45.9183532
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 119 и 46 равна 43.7142723
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 119 и 46 равна 118.788783
Ссылка на результат
?n1=125&n2=119&n3=46
Найти высоту треугольника со сторонами 27, 24 и 20
Найти высоту треугольника со сторонами 97, 90 и 28
Найти высоту треугольника со сторонами 87, 53 и 44
Найти высоту треугольника со сторонами 111, 85 и 55
Найти высоту треугольника со сторонами 126, 108 и 85
Найти высоту треугольника со сторонами 120, 118 и 43
Найти высоту треугольника со сторонами 97, 90 и 28
Найти высоту треугольника со сторонами 87, 53 и 44
Найти высоту треугольника со сторонами 111, 85 и 55
Найти высоту треугольника со сторонами 126, 108 и 85
Найти высоту треугольника со сторонами 120, 118 и 43