Рассчитать высоту треугольника со сторонами 125, 121 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 121 + 6}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-125)(126-121)(126-6)}}{121}\normalsize = 4.54470317}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-125)(126-121)(126-6)}}{125}\normalsize = 4.39927267}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-125)(126-121)(126-6)}}{6}\normalsize = 91.6515139}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 121 и 6 равна 4.54470317
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 121 и 6 равна 4.39927267
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 121 и 6 равна 91.6515139
Ссылка на результат
?n1=125&n2=121&n3=6
Найти высоту треугольника со сторонами 100, 96 и 50
Найти высоту треугольника со сторонами 117, 96 и 59
Найти высоту треугольника со сторонами 142, 138 и 111
Найти высоту треугольника со сторонами 133, 124 и 35
Найти высоту треугольника со сторонами 62, 58 и 5
Найти высоту треугольника со сторонами 150, 91 и 69
Найти высоту треугольника со сторонами 117, 96 и 59
Найти высоту треугольника со сторонами 142, 138 и 111
Найти высоту треугольника со сторонами 133, 124 и 35
Найти высоту треугольника со сторонами 62, 58 и 5
Найти высоту треугольника со сторонами 150, 91 и 69