Рассчитать высоту треугольника со сторонами 125, 122 и 87
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 122 + 87}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-125)(167-122)(167-87)}}{122}\normalsize = 82.3766822}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-125)(167-122)(167-87)}}{125}\normalsize = 80.3996418}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-125)(167-122)(167-87)}}{87}\normalsize = 115.516727}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 122 и 87 равна 82.3766822
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 122 и 87 равна 80.3996418
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 122 и 87 равна 115.516727
Ссылка на результат
?n1=125&n2=122&n3=87
Найти высоту треугольника со сторонами 98, 89 и 83
Найти высоту треугольника со сторонами 46, 44 и 43
Найти высоту треугольника со сторонами 96, 77 и 49
Найти высоту треугольника со сторонами 91, 84 и 35
Найти высоту треугольника со сторонами 104, 101 и 22
Найти высоту треугольника со сторонами 143, 133 и 76
Найти высоту треугольника со сторонами 46, 44 и 43
Найти высоту треугольника со сторонами 96, 77 и 49
Найти высоту треугольника со сторонами 91, 84 и 35
Найти высоту треугольника со сторонами 104, 101 и 22
Найти высоту треугольника со сторонами 143, 133 и 76