Рассчитать высоту треугольника со сторонами 125, 123 и 97
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 123 + 97}{2}} \normalsize = 172.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172.5(172.5-125)(172.5-123)(172.5-97)}}{123}\normalsize = 89.9792386}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172.5(172.5-125)(172.5-123)(172.5-97)}}{125}\normalsize = 88.5395708}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172.5(172.5-125)(172.5-123)(172.5-97)}}{97}\normalsize = 114.097385}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 123 и 97 равна 89.9792386
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 123 и 97 равна 88.5395708
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 123 и 97 равна 114.097385
Ссылка на результат
?n1=125&n2=123&n3=97
Найти высоту треугольника со сторонами 136, 131 и 25
Найти высоту треугольника со сторонами 80, 63 и 29
Найти высоту треугольника со сторонами 94, 86 и 51
Найти высоту треугольника со сторонами 128, 115 и 50
Найти высоту треугольника со сторонами 74, 55 и 45
Найти высоту треугольника со сторонами 124, 85 и 79
Найти высоту треугольника со сторонами 80, 63 и 29
Найти высоту треугольника со сторонами 94, 86 и 51
Найти высоту треугольника со сторонами 128, 115 и 50
Найти высоту треугольника со сторонами 74, 55 и 45
Найти высоту треугольника со сторонами 124, 85 и 79