Рассчитать высоту треугольника со сторонами 125, 124 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 124 + 13}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-125)(131-124)(131-13)}}{124}\normalsize = 12.9959971}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-125)(131-124)(131-13)}}{125}\normalsize = 12.8920292}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-125)(131-124)(131-13)}}{13}\normalsize = 123.961819}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 124 и 13 равна 12.9959971
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 124 и 13 равна 12.8920292
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 124 и 13 равна 123.961819
Ссылка на результат
?n1=125&n2=124&n3=13
Найти высоту треугольника со сторонами 142, 79 и 70
Найти высоту треугольника со сторонами 146, 104 и 92
Найти высоту треугольника со сторонами 142, 95 и 89
Найти высоту треугольника со сторонами 121, 121 и 78
Найти высоту треугольника со сторонами 138, 136 и 73
Найти высоту треугольника со сторонами 60, 59 и 50
Найти высоту треугольника со сторонами 146, 104 и 92
Найти высоту треугольника со сторонами 142, 95 и 89
Найти высоту треугольника со сторонами 121, 121 и 78
Найти высоту треугольника со сторонами 138, 136 и 73
Найти высоту треугольника со сторонами 60, 59 и 50