Рассчитать высоту треугольника со сторонами 125, 79 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 79 + 64}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-125)(134-79)(134-64)}}{79}\normalsize = 54.5515284}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-125)(134-79)(134-64)}}{125}\normalsize = 34.476566}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-125)(134-79)(134-64)}}{64}\normalsize = 67.3370429}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 79 и 64 равна 54.5515284
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 79 и 64 равна 34.476566
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 79 и 64 равна 67.3370429
Ссылка на результат
?n1=125&n2=79&n3=64
Найти высоту треугольника со сторонами 132, 100 и 61
Найти высоту треугольника со сторонами 114, 107 и 17
Найти высоту треугольника со сторонами 126, 98 и 30
Найти высоту треугольника со сторонами 69, 58 и 18
Найти высоту треугольника со сторонами 145, 145 и 26
Найти высоту треугольника со сторонами 137, 132 и 98
Найти высоту треугольника со сторонами 114, 107 и 17
Найти высоту треугольника со сторонами 126, 98 и 30
Найти высоту треугольника со сторонами 69, 58 и 18
Найти высоту треугольника со сторонами 145, 145 и 26
Найти высоту треугольника со сторонами 137, 132 и 98