Рассчитать высоту треугольника со сторонами 125, 92 и 38

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=125+92+382=127.5\color{#0000FF}{p = \Large{\frac{125 + 92 + 38}{2}} \normalsize = 127.5}
hb=2127.5(127.5125)(127.592)(127.538)92=21.8772616\color{#0000FF}{h_b = \Large\frac{2\sqrt{127.5(127.5-125)(127.5-92)(127.5-38)}}{92}\normalsize = 21.8772616}
ha=2127.5(127.5125)(127.592)(127.538)125=16.1016645\color{#0000FF}{h_a = \Large\frac{2\sqrt{127.5(127.5-125)(127.5-92)(127.5-38)}}{125}\normalsize = 16.1016645}
hc=2127.5(127.5125)(127.592)(127.538)38=52.9660017\color{#0000FF}{h_c = \Large\frac{2\sqrt{127.5(127.5-125)(127.5-92)(127.5-38)}}{38}\normalsize = 52.9660017}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 92 и 38 равна 21.8772616
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 92 и 38 равна 16.1016645
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 92 и 38 равна 52.9660017
Ссылка на результат
?n1=125&n2=92&n3=38