Рассчитать высоту треугольника со сторонами 126, 102 и 50

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 102 + 50}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-126)(139-102)(139-50)}}{102}\normalsize = 47.8304829}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-126)(139-102)(139-50)}}{126}\normalsize = 38.7199147}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-126)(139-102)(139-50)}}{50}\normalsize = 97.5741851}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 102 и 50 равна 47.8304829
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 102 и 50 равна 38.7199147
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 102 и 50 равна 97.5741851
Ссылка на результат
?n1=126&n2=102&n3=50