Рассчитать высоту треугольника со сторонами 126, 105 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 105 + 88}{2}} \normalsize = 159.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159.5(159.5-126)(159.5-105)(159.5-88)}}{105}\normalsize = 86.9149963}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159.5(159.5-126)(159.5-105)(159.5-88)}}{126}\normalsize = 72.4291636}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159.5(159.5-126)(159.5-105)(159.5-88)}}{88}\normalsize = 103.705393}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 105 и 88 равна 86.9149963
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 105 и 88 равна 72.4291636
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 105 и 88 равна 103.705393
Ссылка на результат
?n1=126&n2=105&n3=88
Найти высоту треугольника со сторонами 116, 72 и 53
Найти высоту треугольника со сторонами 80, 51 и 37
Найти высоту треугольника со сторонами 81, 65 и 34
Найти высоту треугольника со сторонами 45, 36 и 10
Найти высоту треугольника со сторонами 138, 92 и 79
Найти высоту треугольника со сторонами 99, 79 и 48
Найти высоту треугольника со сторонами 80, 51 и 37
Найти высоту треугольника со сторонами 81, 65 и 34
Найти высоту треугольника со сторонами 45, 36 и 10
Найти высоту треугольника со сторонами 138, 92 и 79
Найти высоту треугольника со сторонами 99, 79 и 48