Рассчитать высоту треугольника со сторонами 126, 107 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 107 + 58}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-126)(145.5-107)(145.5-58)}}{107}\normalsize = 57.7869019}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-126)(145.5-107)(145.5-58)}}{126}\normalsize = 49.073004}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-126)(145.5-107)(145.5-58)}}{58}\normalsize = 106.606871}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 107 и 58 равна 57.7869019
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 107 и 58 равна 49.073004
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 107 и 58 равна 106.606871
Ссылка на результат
?n1=126&n2=107&n3=58
Найти высоту треугольника со сторонами 102, 66 и 50
Найти высоту треугольника со сторонами 144, 115 и 67
Найти высоту треугольника со сторонами 129, 120 и 106
Найти высоту треугольника со сторонами 31, 29 и 19
Найти высоту треугольника со сторонами 119, 116 и 66
Найти высоту треугольника со сторонами 45, 35 и 30
Найти высоту треугольника со сторонами 144, 115 и 67
Найти высоту треугольника со сторонами 129, 120 и 106
Найти высоту треугольника со сторонами 31, 29 и 19
Найти высоту треугольника со сторонами 119, 116 и 66
Найти высоту треугольника со сторонами 45, 35 и 30