Рассчитать высоту треугольника со сторонами 148, 145 и 136
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{148 + 145 + 136}{2}} \normalsize = 214.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{214.5(214.5-148)(214.5-145)(214.5-136)}}{145}\normalsize = 121.678457}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{214.5(214.5-148)(214.5-145)(214.5-136)}}{148}\normalsize = 119.212002}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{214.5(214.5-148)(214.5-145)(214.5-136)}}{136}\normalsize = 129.730708}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 148, 145 и 136 равна 121.678457
Высота треугольника опущенная с вершины A на сторону BC со сторонами 148, 145 и 136 равна 119.212002
Высота треугольника опущенная с вершины C на сторону AB со сторонами 148, 145 и 136 равна 129.730708
Ссылка на результат
?n1=148&n2=145&n3=136
Найти высоту треугольника со сторонами 62, 52 и 37
Найти высоту треугольника со сторонами 92, 74 и 58
Найти высоту треугольника со сторонами 101, 68 и 50
Найти высоту треугольника со сторонами 138, 136 и 81
Найти высоту треугольника со сторонами 67, 56 и 35
Найти высоту треугольника со сторонами 57, 54 и 6
Найти высоту треугольника со сторонами 92, 74 и 58
Найти высоту треугольника со сторонами 101, 68 и 50
Найти высоту треугольника со сторонами 138, 136 и 81
Найти высоту треугольника со сторонами 67, 56 и 35
Найти высоту треугольника со сторонами 57, 54 и 6