Рассчитать высоту треугольника со сторонами 126, 111 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 111 + 33}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-126)(135-111)(135-33)}}{111}\normalsize = 31.0742648}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-126)(135-111)(135-33)}}{126}\normalsize = 27.3749476}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-126)(135-111)(135-33)}}{33}\normalsize = 104.522527}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 111 и 33 равна 31.0742648
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 111 и 33 равна 27.3749476
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 111 и 33 равна 104.522527
Ссылка на результат
?n1=126&n2=111&n3=33
Найти высоту треугольника со сторонами 134, 100 и 74
Найти высоту треугольника со сторонами 75, 64 и 33
Найти высоту треугольника со сторонами 95, 67 и 55
Найти высоту треугольника со сторонами 136, 122 и 102
Найти высоту треугольника со сторонами 52, 49 и 38
Найти высоту треугольника со сторонами 100, 97 и 43
Найти высоту треугольника со сторонами 75, 64 и 33
Найти высоту треугольника со сторонами 95, 67 и 55
Найти высоту треугольника со сторонами 136, 122 и 102
Найти высоту треугольника со сторонами 52, 49 и 38
Найти высоту треугольника со сторонами 100, 97 и 43