Рассчитать высоту треугольника со сторонами 126, 119 и 117

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 119 + 117}{2}} \normalsize = 181}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{181(181-126)(181-119)(181-117)}}{119}\normalsize = 105.63054}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{181(181-126)(181-119)(181-117)}}{126}\normalsize = 99.7621763}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{181(181-126)(181-119)(181-117)}}{117}\normalsize = 107.43619}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 119 и 117 равна 105.63054
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 119 и 117 равна 99.7621763
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 119 и 117 равна 107.43619
Ссылка на результат
?n1=126&n2=119&n3=117